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A B S T R A C T   

Europa is a compelling target because of its unique geology and potential for habitability. Efforts to map the 
small-scale global geology of the moon have been hampered by the availability of suitable imaging (≤ 230 m/ 
pix), which covers only 15% of the surface. New data on the abundance of microfeatures (features ≤100 km2 in 
area) on a global scale and their locations would help put better constraints on the geophysics of the icy world. 
We mapped microfeatures in low-resolution images of the E15RegMap01 region of Europa and compared our 
low-resolution dataset to a validated dataset collected using regional mosaic imaging. We evaluated how many 
features were missed in low-resolution mapping, the feature types to which they belonged, how often mis-
classifications were made, and how many false-positive features there were in the low-resolution dataset. We 
found that microchaos, hybrids, and spots were found at relatively high completeness rates when compared to 
the regional mosaic dataset, but domes and especially pits were almost always missed. Microchaos, hybrids, and 
spots also had the highest rates of consistent classification between the low-resolution and regional mosaic 
datasets. Finally, 36% of our total potential feature count from the low-resolution dataset were revealed to be 
false positives, mostly caused by ridges and shadows that were mistaken for features in low-resolution imaging. 
These findings quantitatively estimate the likely errors in existing and future global geologic maps that note the 
presence of microfeatures, offer remedies to minimize these errors, and provide guidance for future Europa 
mappers.   

1. Introduction 

The icy satellite Europa is an important target for astrobiological 
study, partially because of its known volume of liquid water (Chyba and 
Phillips, 2007), which could be a present or past habitat for organisms. 
To accurately assess the potential for life in the solar system, future 
exploration of Europa should focus on the features most likely to be 
associated with liquid water. Chaos features are especially compelling 
targets because of their potential association with heat (Pappalardo 
et al., 1998; Rathbun et al., 1998; Collins et al., 2000; Sotin et al., 2002; 
Pappalardo and Barr, 2004; Showman and Han, 2005; Mitri and 
Showman, 2008; Schmidt et al., 2011), implying they could be linked to 
liquid water at or near Europa’s surface. The study of these features has 
illustrated Europa’s history and helped explain the dynamics of an ice 
shell over an ocean world. 

Large-scale geologic features on Europa’s surface have been mapped, 
particularly large chaos features (Greenberg et al., 1999; Spaun et al., 

1998; Prockter et al., 1999; Greeley et al., 2000; Riley et al., 2000; 
Figueredo et al., 2002; Figueredo and Greeley, 2004; Doggett et al., 
2009; Leonard et al., 2019). At smaller scales (≤ 100 km2 in area), 
microchaos is found alongside other features of similar size that are also 
thought to be endogenic, such as domes, pits, and spots, and hybrid 
features that have characteristics of both domes and microchaos 
(Greenberg et al., 2003; Singer et al., 2010; Culha and Manga, 2016; 
Noviello et al., 2019; Singer et al., 2013). These features have previously 
been called lenticulae in the literature but are here called microfeatures 
(consistent with Noviello et al., 2019) to emphasize that they are not 
purely albedo features; examples of each type are shown in Fig. 1. 
Because small chaos features are co-located with other types of micro-
features and are of similar sizes, many studies (Pappalardo et al., 1998; 
Rathbun et al., 1998; Collins and Nimmo, 2009; Singer et al., 2010; 
Schmidt et al., 2011; Michaut and Manga, 2014; Manga and Michaut, 
2017; Noviello et al., 2019; Singer et al., 2013) suggest that they share a 
similar formation process, one likely connected to Europa’s heat budget 
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and transport processes within the ice shell. 
New data on the abundance of microfeatures on a global scale and 

their locations on Europa’s surface would help put better constraints on 
the geophysics of the icy world. For example, microfeature formation 
models predict that chaos and other features would have different global 
distributions depending on whether they formed via melting (Sotin 
et al., 2002; Collins and Nimmo, 2009; Soderlund et al., 2014) or via the 
formation of sills in the ice shell (Schmidt et al., 2011; Michaut and 
Manga, 2014; Craft et al., 2016; Manga and Michaut, 2017). Deter-
mining the locations of additional microfeatures over a larger surface 
area of Europa than has been previously mapped could identify which of 
these models is more appropriate for Europa and help direct future 
modeling efforts. 

Most past mapping efforts focused primarily on regional scale- 
resolution (~230 m/pixel) image mosaics, henceforth called RegMaps 
(Doggett et al., 2009; Neish et al., 2012; Culha and Manga, 2016; 
Noviello et al., 2019). RegMaps are good resources for geomorphic 
mapping on Europa at a finer scale, but only cover ~10% of its total 
surface area (Doggett et al., 2009). Most of the imaging of Europa’s 
surface falls outside of the regional mosaics at significantly lower reso-
lutions (>1 km/pix). This does not preclude the ability to measure large- 
scale features (e.g., Leonard et al., 2019), including large chaos features 
(Neish et al., 2012). Furthermore, Leonard et al. (2019) have produced 
global geologic maps of Europa that included potential microchaos 
features within low-resolution images. These maps did not differentiate 
between potential microchaos and other microfeatures. 

The results of mapping studies, especially those that focus on chaos 
features, are also greatly affected by the imaging parameters. In general, 
when mapping with high-resolution images and higher incidence angles, 
the successful (and consistent) identification of chaos regions increases 
(Riley et al., 2000; Hoppa et al., 2001; Neish et al., 2012). These studies 
focused on finding and identifying large (≥ 1500 km2 in area) chaos 
features, far larger than the size cut-off for microfeatures, including 
microchaos (≤ 100 km2). Additionally, the success rates of mapping and 
identifying non-chaos microfeatures in low-resolution imaging have not 
been quantified. 

Low-resolution Galileo imaging contains a wealth of potentially us-
able data that has not yet been fully explored. If additional morphologic 
data could be gleaned from this dataset, we could better constrain 
models for microfeature formation. Here we find and describe the limits 
of microfeature identification in low-resolution images by creating a 
dataset of features in low-resolution images and comparing it to a 
published dataset collected in the same area using the E15RegMap01 
mosaic (Noviello et al., 2019). Directly comparing these datasets will 
help determine the main sources of error and quantify uncertainty when 
mapping microfeatures in low-resolution images. Here, we specifically 
look for microfeatures in an area covered by both regional-mapping and 
low-resolution imaging to quantify the error rates in both omitting and 
misclassifying features. These results can lead to a stronger interpreta-
tion of existing global maps that noted microchaos (Leonard et al., 
2019), but did not differentiate it from other microfeatures on Europa, in 
order to refine microfeature formation models. These constraints could 
also be applied to future efforts to map microfeatures outside of tradi-
tional regional mosaics to provide additional constraints for micro-
feature formation and heat and material transfer models. In turn, these 
maps can enhance our understanding of Europa’s geology ahead of the 
flagship Europa Clipper mission (Phillips and Pappalardo, 2014; Pap-
palardo et al., 2016; Pappalardo et al., 2017), strengthen the justifica-
tion for certain scientific objectives, and increase the success of the 
overall mission. 

2. Methods 

2.1. Images used 

One region, E15RegMap01, was selected as a low-resolution 

Fig. 1. Examples of microfeatures, identified in regional mosaics of Europa’s 
surface, used here as classification archetypes for the E15LowRes01 mapping 
dataset. All sun angles from the right. North is up, scale bar is valid for all 
microfeature types. Microfeatures are to scale in the images. A) Microchaos, 
classified as such by its irregular shape, the hummocky interior and clear 
disruption of the previous terrain, and low albedo (though not all microfeatures 
exhibit low albedos). B) A dome, characterized by its positive topography. C) 
Type I hybrid morphology, characterized by a positive topographic feature 
inside of a dark “halo.” The halo can be smooth or have a hummocky appear-
ance. D) Type II hybrid morphology, characterized by a positive topographic 
feature with a fully disrupted surface, akin to the hummocky interior of the 
chaos feature in 1A. The visible cracks are inconsistent with the surrounding 
terrain. E) A pit, characterized by its negative topography. F) A spot, charac-
terized by its consistent, low albedo and lack of interior disruption. Adapted 
from Noviello et al. (2019). 
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mapping test case. Only images taken with the Galileo SSI (Belton et al., 
1992) broadband clear filter (central wavelength 611 nm) were 
included. Details of these images are included in the Supplementary 
Material, along with a description of the photometric correction applied 
to them using the USGS ISIS3 software (Torson and Becker, 1997; 
Anderson et al., 2004); for a full description of this region, see Noviello 
et al. (2019). The E15RegMap01 images had average resolutions ranging 
from 228 to 234 m/pixel. We used the USGS Planetary Image Locator 
Tool (PILOT; USGS, 2020) to identify appropriate images that covered 
the E15RegMap01 area. We constrained our search to images with res-
olutions between 1.4 and 1.7 km/pixel (at least six times the resolution 
of the E15RegMap01 images) and images taken with the clear filter to 
eliminate any bias in using another filter. In total, five images met these 
criteria, and four images that collectively covered the full study area 
were used for the low-resolution mapping. The fifth image covered a 
redundant area to one of the other images and was therefore not 
considered. The area studied in this work is the same as that in the 
G1ESGLOBAL01 mosaic; however, because we evaluate the four images 
independently and because we only study the part of the region that is 
also covered by the E15RegMap01, we distinguish it by a different name, 
E15LowRes01. 

These images were processed using the USGS ISIS3 software (Torson 
and Becker, 1997; Anderson et al., 2004), positioned using the estab-
lished Europa basemap (USGS, 2002), and examined individually. De-
tails of the four low-resolution images are provided in Table 1 for only 
the parts of the images used in the low-resolution mapping, and Table 2 
for the average values across the entire image. The incidence angle range 
for areas mapped within these images spans 37.43–57.30◦. These are 
relatively low incidence angles for identifying microchaos according to 
Neish et al. (2012), who recommended incidence angles >70◦; this is 
discussed extensively in Section 4.3. Maps showing the E15RegMap01 
study area and the low-resolution images’ overlap with E15RegMap01 
are provided in Fig. 2. 

2.2. Dataset collection 

To assess completeness and accuracy, the low-resolution dataset 
collected in the E15RegMap01 area (here called E15LowRes01) was 
directly compared to the E15RegMap01 dataset described in Noviello 
et al. (2019) and whose microfeature attributes are summarized in the 
first line of Table 3. The E15RegMap01 dataset was collected using the 
individual images detailed in the Supplementary Material, and compiled 
from and validated against four independently collected datasets 
(Greenberg et al., 2003; Singer et al., 2010; Culha and Manga, 2016; 
Noviello et al., 2019; Singer et al., 2013) to ensure the most accurate and 
robust microfeature dataset. 

The low-resolution data were mapped using the same methodology 
employed to collect the four RegMap datasets described in Noviello et al. 
(2019). The boundaries of potential features were mapped as polygons 
in ArcGIS. Using ArcGIS tools, we collected information about each 
feature’s mapped area, perimeter, latitude, longitude, maximum length, 
and maximum width. In addition to area and perimeter, we also calcu-
lated the equal area diameter for each feature, defined as the diameter of 
a circle that has the equivalent area as the feature. We used this value to 
estimate the minimum size of a visible feature using the reasonable 

lower limit of five pixels (e.g., Singer et al., 2013), and determined that 
7.5 km is the expected minimum diameter of a visible feature in the 
E15LowRes01 dataset. 

We chose five pixels for two reasons, the first being that five pixels 
should help minimize the erroneous mapping of false positives, and the 
second being the size restrictions of the microfeatures themselves. While 
some previous studies suggest a typical microfeature size around 10 km 
in diameter (Carr, 1998; Greeley et al., 2000; Pappalardo et al., 1998; 
Spaun et al., 1999), other work (Greenberg et al., 2003; Noviello et al., 
2019) has not found evidence to support that except perhaps in the case 
of microchaos, as noted first in Pappalardo et al. (1998) but questioned 
in Riley et al. (2000). All other microfeature types have average 
maximum lengths that range between 4 and 9 km, with pits, domes, and 
spots peaking in the 5–8 km range and hybrids and microchaos in the 
upper range. In terms of their equal-area diameters (the diameter of a 
circle with an equivalent area), the peaks are between 4 and 5 km, even 
smaller sizes than the maximum length. Five pixels in the low-resolution 
images corresponds to the 7.5 km expected minimum diameter 
mentioned previously. Therefore, we expect our dataset to favor the 
larger microfeatures of all categories, particularly microchaos and hy-
brids, though we did not actively avoid mapping microfeatures under 
this limit. 

The microfeatures were then classified into one of the defined 
microfeature groups based on their appearance in the low-resolution 
images. The morphology types are as follows: microchaos, a relatively 
flat feature that has clear disruption of its interior; domes, features with 
positive topography as determined by the direction of shadows; pits, 
features with negative topography as determined by the direction of 
shadows; spots, features of no apparent topography and near-uniform 
low albedo; and hybrids, features that have a mixture of microchaos 
features (irregular shapes, disrupted interiors, etc.) and domes. These 
feature types are shown in Fig. 1. Ambiguous microfeatures were 
assigned to the “unclassified” group. 

We note that, because the same person did the mapping for both the 
regional mosaic map and the low-resolution image map, a previous 
knowledge of the area may have influenced the low-resolution classifi-
cations at some level. However, there was a gap in time of about 10 
months between data collection and the regional mapping project 
encompassed four different regions of Europa, likely reducing the 
biasing effect of prior knowledge within this one region. Still, this is a 
source of bias in the datasets, and therefore the accuracy values (dis-
cussed in the next section) presented here should be considered to be 
upper limits. 

2.3. Completeness and accuracy rates 

To better assess the completeness of the E15LowRes01 dataset, we 
report the “find rate,” which is defined as the percentage of features 
mapped in E15RegMap01 that were also identified in E15LowRes01, 
even if the classification of the feature was inconsistent between the two. 
The find rates for all categories are given in the last row of Table 3. Once 
features are found in E15LowRes01 imaging, the next step is to deter-
mine how often the classifications done in the E15LowRes01 dataset are 
consistent with the E15RegMap01 classifications, which are assumed to 
be more robust. This is done by comparing the classification made in 

Table 1 
The imaging characteristics of the low-resolution Galileo images used for mapping in this study, including the unique identifier of the spacecraft clock start count 
number (s_clocknumber). These details represent the range of imaging parameters across only the part of the image used for mapping except for the column that 
specifically says “Whole Image” (see Fig. 2 for a visual representation of this).  

Image ID (s_clocknumber) Orbit Acquired On Incidence Angle Range (◦) Emission Angle Range (◦) Phase Angle Range (◦) Pixel Resolution Range in m/px 

5139r (03498751.39) G1 40.30–41.29 2.98–20.48 37.51–37.55 1570.42–1571.40 
5126r (03498751.26) G1 37.43–52.25 17.38–19.27 34.03–37.40 1571.11–1571.26 
5113r (03498751.13) G1 42.25–54.45 6.62–27.09 37.40–37.47 1570.47–1572.10 
5100r (03498751.00) G1 51.58–57.30 15.02–35.99 37.37–37.41 1570.88–1573.37  

J.L. Noviello and A.R. Rhoden                                                                                                                                                                                                               



Icarus 365 (2021) 114495

4

both datasets and noting if they match. If they match, then it is counted 
as a successful identification. We also quantify the rates of false positives 
by studying the “phantom” feature rate, or the amount of times a po-
tential feature was mapped in the low-resolution dataset but was 
revealed to have no corresponding feature of any type in the higher- 
resolution E15RegMap01 dataset. 

3. Results 

3.1. E15LowRes01 mapping and identification 

In total, 214 total features were mapped in E15LowRes01; this map is 
shown in Fig. 3A. The equivalent diameter of all of these features ranged 
from 2.33 km to 21.25 km. The minimum equivalent diameter of 

Table 2 
The average imaging characteristics of the low-resolution Galileo images including the unique identifier of the spacecraft clock start count number (s_clocknumber). 
The average incidence angles of these images do not accurately represent the values of the area studied (Table 1), emphasizing the need to use the parts of low- 
resolution Galileo imaging most suited for regional mapping (e.g., those with moderate-to-high incidence angles following Neish et al., 2012).  

Image ID 
(s_clocknumber) 

Galileo Orbit 
Acquired On 

Average Phase 
Angle 

Average Emission 
Angle 

Average Incidence 
Angle 

Incidence Angle Range 
(◦) 

Average Pixel Resolution in 
m/px 

5139r (03498751.39) G1 37.72 32.36 30.29 2.1416–69.86 1572.85 
5126r (03498751.26) G1 37.72 24.15 21.14 0.02–54.31 1571.76 
5113r (03498751.13) G1 37.30 27.41 61.65 36.73–116.92 1572.13 
5100r (03498751.00) G1 37.25 35.43 67.68 38.39–120.74 1573.27  

Fig. 2. A) The E15RegMap study area (with navy blue outline) with the low-resolution images overlain. No single image covered the entire study area, hence why 
four total images were used. Details about these images are provided in Table A1. B) The E15RegMap study area (navy blue outline) with low-resolution imaging 
coverage polygons overlain. This represents which parts of E15RegMap01 were mapped in which image. These images used here are 5100r (s_clocknumber =
03498751.00), 5113r (s_clocknumber = 03498751.13), 5126r (s_clocknumber = 03498751.26), and 5139r (s_clocknumber = 03498751.39). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Count breakdown of all microfeatures mapped in E15LowRes01 compared to the higher-resolution dataset, E15RegMap01. The total number of features mapped in 
E15RegMap01 is 339, the total number of features mapped in E15LowRes01 is 214, and the total number of missed features is 195. Only microfeatures (≤100 km2 in 
area) are reported in this table.  

Data Set Total Chaos (%) Domes (%) Hybrids (%) Pits (%) Spots (%) Unclassified (%) 

All E15RegMap01 microfeatures 310 68 (21.9) 33 (10.6) 36 (11.6) 119 (38.4%) 23 (7.4%) 31 (10.0) 
E15LowRes01 microfeatures (classified in low-resolution images) 187 83 (44.4) 11 (5.9) 6 (3.2) 6 (3.2) 53 (28.3) 28 (15.0) 
Missed E15RegMap01 microfeatures 193 15 (7.8) 25 (13.0) 12 (6.2) 113 (58.5) 6 (3.1) 22 (11.4) 
Find rate x 77.9% 24.2% 66.7% 5.0% 73.9% 29.0%  
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mapped features in the E15LowRes01 dataset is less than the estimated 
minimum size using the “five pixel rule,” mainly due to albedo differ-
ences that made them more obvious (see Discussion). Based on the size 
limit within the definition of microfeatures (equivalent diameter ≤
11.28 km), 187 of the mapped features are considered microfeatures; 
their type breakdowns are provided in Table 3. Of these 187 presumed 
microfeatures, 70 (37.6%) of the features mapped have equivalent di-
ameters above 7.5 km, the assumed minimum size for features that 
would be visible in the low-resolution imaging. These 70 features were 
classified in low-resolution imaging as: 55 microchaos (78.6%), two 
domes (2.9%), four hybrids (5.7%), no pits, two spots (2.9%), and seven 
unclassified features (10.0%). 

3.2. Missed features and find rates 

Features were considered “found” if a feature in the E15LowRes01 
dataset overlapped with a feature in the E15RegMap01 dataset. Out of 
the 310 features identified in the higher resolution E15RegMap01 
dataset, a total of 195 features were not mapped at all in E15LowRes01 
and are considered missed (Fig. 3B). Out of these 195 missed features, 
193 are within the microfeature size cut-off (≤ 100 km2 in area or under 
11.28 km in equivalent diameter), and nearly all (187, 96.9%) are above 
2.5 km in equal-area diameter, almost the smallest size mapped in the 
E15LowRes01dataset. Hence, we consider 187 of these features as 
“findable” based solely on their size. The distribution of the diameters of 
the missed features has a peak between 5 and 6 km (Fig. 4A and B) and 
qualitatively matches with the distribution of the microfeatures mapped 
in E15LowRes01, suggestive of minimal size bias between missed and 
mapped features. The measured find rates for features by bin size 
(Fig. 4C) is also relatively constant except for at small and at large 

microfeature sizes, again suggestive of minimal size bias. 
The measured sizes of the microfeatures between the two datasets is 

also of interest, as it might be expected that the microfeatures mapped in 
the low-resolution imaging would have a larger average size their cor-
responding microfeatures mapping in the regional mapping imaging size 
due to the coarser resolution. To evaluate this, we compared the equal 
area diameters of only the features that had been found as measured in 
both datasets. We define the equal area diameter to be the diameter of a 
circle with equal area to the feature and calculated with the equation 

Diam. = 2*
̅̅̅̅̅̅̅
Area

π

√

. Microchaos, domes, hybrids, and spots mapped in 
low-resolution were larger on average than their regional mapping 
counterparts. Microchaos, domes, and hybrids mapped in low-resolution 
all had a less than 10% size increase compared to the regional mapping 
dataset (3.6%, 9.8%, and 8.5%, respectively). Spots in low-resolution 
were 23.4% larger, on average, than their counterparts in the regional 
mapping. Pits were the only features that were mapped to be smaller on 
average in the low-resolution dataset than in the regional mapping one 
(smaller by 19.9%). We discuss some reasons for this in the Discussion 
section. 

The type breakdowns of the missed features are also given in Table 3. 
Pits are noticeably rare in the E15LowRes01 data set despite having 
been the most numerous microfeature type (by nearly a factor of two) in 
the regional mapping data set. In several cases, we report more features 
of a given type within the low resolution data set than were found in the 
high resolution data set, which is caused by both misclassification (see 
next section) and false positives. Features mapped in the E15LowRes01 
dataset that did not have a corresponding microfeature in the 
E15RegMap01 dataset are the false positives, which we refer to as 
phantom features. In total there were 76 phantom features, of which 68 

Fig. 3. A) Map showing all features mapped in the E15LowRes01 dataset, including phantom features that have no corresponding feature in the regional mapping 
data set. Classifications here refer to the low-resolution classification. The features whose boundaries extend outside of the map limits were excluded from the dataset 
prior to analysis, as well as any features whose area was above 100 km2. B) All features (in orange) of the E15RegMap01 study area missed in low-resolution mapping 
of the same area. The navy blue outline represents the extent of the study area. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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Fig. 4. A) Histogram of equal-area circle diameters for all microfeatures successfully mapped in the original E15RegMap01 dataset; B) All missed microfeatures from 
the E15RegMap01 dataset. C) The find rates for microfeatures in E15RegMap01 as a function of their areas. Bin sizes for diameters are fixed at 1 km for both A and B. 
For C, they are fixed at 10 km2. 

Fig. 5. A stacked bar histogram showing the count of 
features mapped in the E15LowRes01 dataset that 
were classified correctly, misclassified, or unmapped 
features (i.e., the phantom features). The solid bars 
represent the total number of that microfeature type 
mapped in the E15RegMap01 dataset. The numbers 
above the bars show the total number of features that 
were mapped and correctly classified compared to the 
total number of features mapped for that feature type 
in the E15LowRes01 dataset. The colors in the small 
boxes above the bars represent the color of the correct 
feature type for that bar.   
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were under the microfeature size cut-off. 

3.3. Accuracy rates 

Accuracy in this context is the ability to find a feature in both low- 
resolution and the E15RegMap01 imaging and have a consistent clas-
sification of that feature between both datasets. When comparing the 
classification of a feature in lower resolution with that made using the 
higher resolution images, we found that some microfeatures groups 
were mapped more accurately than others (Fig. 5). Microchaos features 
were correctly classified 47 out of the 83 times (56.6%) they were 
mapped, domes were correct zero out of 11 times, hybrids were correct 
two out of six times (33.3%), pits were correct zero out of six times, and 
spots were correct ten out of 53 times (18.9%). The classification ac-
curacies for each microfeature type are in the boxes highlighted in green 
in Table 4. Also included are the occasions where phantom features were 
detected and mapped and the category to which they were assigned in 
the E15LowRes01 dataset. The general accuracy rates (Table 4 and 
Fig. 5) of mapping depend on whether or not the unclassified features 
are included in the calculation. In total there were 28 unclassified fea-
tures in the E15LowRes01 dataset. However, there were no features 
assigned to the “unclassified” group in the E15LowRes01 dataset that 
were also unclassified in the E15RegMap01 dataset (Table 4). The 
overall accuracy rate of our low resolution mapping is 59 out of 187 
(31.6%) when E15RegMap01 unclassified features are included, and 59 
out of 159 (37.1%) when they are excluded. 

4. Discussion 

The microfeatures initially mapped in the E15RegMap01 region, 
including those left unclassified, number 310. A total of 193 of these 
microfeatures were not identified in the E15LowRes01 data set. This 
implies that 117 microfeatures were found, a number verified by looking 
at the dataset directly. If there are 187 microfeatures mapped and 68 of 
them are false positives, that should mean that 119 features mapped in 
the E15LowRes dataset correspond to a real feature in the E15RegMap01 
dataset. This apparent discrepancy in the numbers is remedied when 
examining the datasets more closely. Some of the low-resolution 
microfeatures are large enough to touch two features in the 
E15RegMap dataset, mistakenly marking two features as “found.” This 
happened five times in this analysis, but only resulted in two extra 
features counted as “found” that would not have been counted other-
wise. Overall this suggests that a low percentage (five out of 187, 2.7%) 
of features could truly be multiple, closely-spaced individual features 
whose boundaries cannot be distinguished in low-resolution imaging. 
An example of this kind of error is shown in Fig. 6. 

We also consider the reason for the found microfeature size differ-
ences between the low-resolution and regional mapping datasets. For 
microchaos, domes, and hybrids, the size differences were all less than 
10%. This suggests that these features are being mapped as roughly true 
to size, especially for the microchaos. It is likely that the albedo 

difference of microchaos against Europa’s background lends itself well 
to accurate size mapping. Not all hybrid features have a low albedo (e.g., 
Type I hybrids), which could explain why hybrid features have a size 
increase more similar to domes than to microchaos. For spots, the size 
difference between the datasets was 23.4%, significantly larger than for 
microchaos, domes, or hybrids. The likeliest source of this increase is 
related to the fact that spots are the smallest of all of the microfeatures 
(Noviello et al., 2019). Any spots that were successfully mapped were 

Table 4 
Classification accuracy breakdown of all microfeatures mapped in E15LowRes01. The columns across represent the classifications in the E15RegMap01 dataset, and 
the rows down represent the classifications made in the E15LowRes01 dataset. The values highlighted in green are the ones whose classifications matched between the 
two datasets.   

Total Microchaos Counts 
(%) 

Dome Counts 
(%) 

Hybrid Counts 
(%) 

Pit Counts 
(%) 

Spot Counts 
(%) 

Unclassi-fied Counts 
(%) 

Phantom Counts 
(%) 

Micro-chaos 83 47 (56.6%) 1 (1.2%) 12 (14.5%) 0 6 (7.2%) 3 (3.6%) 14 (16.9%) 
Dome 11 2 (18.2%) 0 2 (18.2%) 0 0 1 (9.1%) 6 (54.5%) 
Hybrid 6 2 (33.3%) 1 (16.7%) 2 (33.3%) 0 0 0 1 (16.7%) 
Pit 6 1 (16.7%) 1 (16.7%) 0 0 0 0 4 (66.6%) 
Spot 53 6 (11.3%) 1 (1.9%) 4 (7.5%) 2 (3.8%) 10 (18.9%) 4 (7.5%) 26 (49.1%) 
Unclassi- 

fied 
28 6 (21.4%) 1 (3.6%) 1 (3.6%) 1 (3.6%) 2 (7.1%) 0 17 (60.7%) 

Phantom 68 14 (20.6%) 6 (8.8%) 1 (1.5%) 4 (5.9%) 26 (38.2%) 17 (25.0%) x  

Fig. 6. An example of a case where a presumed single feature mapped in a low- 
resolution image (A) is revealed to be two separate features in the regional-scale 
imaging (B). In this case, the feature was classified as a single chaos feature in 
the low-resolution dataset but was classified as two separate hybrid features in 
the E15RegMap01 dataset. Thus, this is both a case of two microfeatures 
merging into one in low-resolution imaging and misclassification. This error is 
uncommon; only 2.7% of all potential microfeatures mapped in low-resolution 
imaging were revealed to be two separate features. 
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likely to be larger by default, and thus the increase in average size would 
be more severe. Indeed, many spots were large enough to be mistaken 
for chaos in low-resolution imaging (Table 4). Pits were the only feature 
that had a smaller size in the low-resolution mapping than in the 
regional mapping (~20% smaller); however, this number is almost 
certainly incorrect, as there are only three pits in the “found” dataset, 
not nearly enough to draw robust conclusions. This means that efforts to 
map microchaos, domes, and hybrid features can consider the low- 
resolution features roughly accurate in size, if slightly too large, but 
spots and pits should be approached with more caution. 

4.1. Effects of size of microfeatures on mapping in low-resolution imaging 

There does not appear to be a clear size cut-off below which a ma-
jority of features are missed, though we do note from that by using the 
7.5 km (five pixel) size cut-off, we would exclude smaller features such 
as the pits, domes, and spots by default. If it was difficult to identify 
microfeatures below a certain diameter size, the histogram of missed 
microfeatures would show a plateau in the histogram up to that size, and 
above that the missed counts would decrease, signaling few missed 
microfeatures. This is not observed, nor is it observed in the find rates 
when compared to microfeature areas (Fig. 4C). The smallest confirmed 
feature identified in the low resolution images was a spot that was 3.56 
km in equal-area diameter. This feature also had a consistent classifi-
cation between the E15LowRes01 and E15LowRes01 datasets as a spot. 
As the smallest feature type, spots were also at a disadvantage for being 
found, but were overrepresented in the low-resolution dataset largely 
because of their low albedo contrasting with high albedo plains material 
on Europa (though many of these “spots” were revealed to be false 
positives). The smallest feature mapped in this dataset was 2.33 km in 
equal-area diameter (put in the “unclassified” group), well below the 
five-pixel detection limit of 7.5 km, but this feature was revealed to be a 
phantom feature. Overall, this work shows that it is possible to map 
microfeatures on Europa as small as 2.5 km in diameter even in low- 
resolution imaging in some cases, though the accuracy of these classi-
fications is very low. 

Rather than a 7.5 km (five pixel) limit, a more appropriate rule for 
detecting features on a bright surface such as Europa could be as small as 
2.5 km in diameter if the feature has an apparent albedo that differs 
significantly from the background, as many of the microchaos, hybrid, 
and spot features do, but the likelihood of these potential features being 
true features is low. The phantom feature rate drops to under 50% when 
features are larger than 20 km2 in area (~5.0 km in equal-area diam-
eter), and drops to about 25% above this size. Therefore, the smallest 
size feature that can be mapped and classified with a moderate level of 
confidence is around 5.0 km in diameter. To maximize information out 
of future datasets, we recommend that future low-resolution mapping 
efforts of Europa actively map and classify features as small as 5 km in 
diameter. Smaller features can be mapped but must be interpreted 
cautiously, as they are highly likely to be phantom features. 

Another finding regarding microfeature size is that the accuracy rate 
for microfeatures increases as size increases from 10 to 100 km2. A 
simple linear model (y-intercept = 11.494, 95% CI:[− 1.46, 24.45], p- 
value = 0.075; slope = 0.646, 95% CI:[0.40, 0.89], p-value <0.001) 
yields a high positive correlation (rsq = 0.825, rsq., adj. = 0.803) between 
accuracy and size (Fig. 7A), though much of the accuracy at larger sizes 
is dominated by microchaos (Fig. 7B). The correlation coefficient means 
that the linear model can explain about 80% of the variation observed in 
the data. The general positive trend makes sense, as a larger feature 
should be easier to identify because its details should be more apparent. 
Small-sample statistics may be the reason that at smaller sizes the ac-
curacy rate is higher than predicted by the model, and actually drops 
initially as sizes of the features increase. It may be that the smallest 
microfeatures were only found because their apparent albedos con-
trasted with the surrounding terrain, which made them both visible and 
more likely to belong to the microchaos, hybrid, or spot classifications. 

Fig. 7. A) Accuracy of E15LowRes01 classification as a function of size, shown 
as a line histogram. Solid lines follow the left y-axis, dashed lines follow the 
right. The bins represent 10 km2 in area and are plotted at the left edge of the 
bin (e.g., the measurements for the 20–30 km2 bin are plotted on the 20 km2 

line). Accuracy is defined as when a feature mapped and classified in 
E15LowRes01 is mapped in the same place as another feature with the same 
classification in the regional mapping dataset. The black line represents the raw 
counts per bin (number of correct cross-classifications), and the red dotted line 
represents the cumulative number of correct classifications for all the bins. The 
blue dashed line with open circles represents the percentage of correct classi-
fications per bin relative to the total number of features per bin. The blue line 
follows the scale on the right y-axis. The trend is that as microfeature size in-
creases, the number of correct classifications (accuracy) also increases. The 
linear regression of accuracy versus area yields a slope of 0.646, a y-intercept of 
11.494, and an r2

adj of 0.803. B) The breakdown of the accuracy of these fea-
tures as a function of size and microfeature type. High accuracy rates at large 
sizes are largely driven by microchaos, which is both relatively easy to map in 
low-resolution imaging and the largest microfeature type. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Simultaneously, the larger microfeatures that had apparent albedos 
similar to the terrain did not provide enough visual information to make 
an accurate classification. 

One additional yet important detail of this result is that microchaos 
tends to dominate the overall counts at larger sizes, making a person 
more likely to call a larger feature microchaos, especially if it also has a 
low relative albedo. Hybrid features also are larger on average than pits, 
domes, and spots, though to a lesser extent than microchaos (Noviello 
et al., 2019). This is represented in Fig. 7B, which shows that microchaos 
classifications tend to drive the higher accuracy rates. Prior knowledge 
of these facts could lead to a larger feature being called microchaos by 
default, unless it is clear that the feature fits better in another group. 
Microchaos, hybrids, and spots also tend to have a lower albedo than the 
surrounding terrain, making them more visible than equally-sized 
domes and pits, though apparent albedo is also highly dependent on 
imaging angles (Hoppa et al., 2001; Neish et al., 2012). We stress that 
the ability to find a relatively large feature area and/or a darker patch on 
Europa’s surface is not a guarantee of correct classification, but they are 
helpful pieces of information. 

4.2. Find and accuracy rates 

The accuracies of our classifications are shown graphically in Fig. 5, 
in which the x-axis denotes the classifications made in either low- 
resolution or the E15RegMap01 dataset. The stacked bars then break 
down the number of classified features into their designations within the 
regional mapping data set using the colors listed in the legend. We also 
provide the number of microfeatures of that type that were mapped in 
the E15RegMap01 dataset as solid-colored bars next to the multicolored 
ones. Because the same person mapped both the regional mosaic and the 
low-resolution datasets, the low-resolution dataset collection was at 
least partially influenced by prior knowledge of the region. Thus, these 
numbers should be considered an upper limit on accuracy rates. 

The overall accuracy of correctly classified microfeatures is 59 out of 
187, or 31.6%. Microchaos, hybrids, and spots were found at relatively 
high rates (66.7 to 77.9%), even though these were often misclassified. 
Domes and pits were found at very low rates, only 24.2% and 5.0% of 
the features mapped in higher resolutions, respectively, and the accu-
racy of features classified as pits and domes in low resolution was zero. 
The hybrid features that were not mapped in the low-resolution dataset 
(an error of accidental omission) all belonged to the Type II (cracked 
dome) subcategory described in Noviello et al. (2019), as opposed to the 
Type I hybrid subcategory, which look like a low-albedo dome sur-
rounded by a hummocky moat reminiscent of some chaotic terrain. That 
Type II hybrid features are missed more often than Type I is consistent 
with the finding that domes are missed more often than microchaos 
features, and that low albedo features are easier to identify. Fig. 8 shows 
an example of a Type II hybrid feature that was accidentally omitted in 
the low-resolution mapping. 

Importantly, not all low-albedo features mapped in low-resolution 
images can be correctly interpreted to be microchaos or chaos-related 
features; roughly 40% of all features that were called “chaos” in the 
E15LowRes01 dataset were revealed to be misclassified microfeatures or 
phantom features in the E15RegMap01 dataset. An argument can be 
made that microchaos, spots, and hybrid microfeatures are inherently 
related due to their similar characteristics, particularly their low 
apparent albedos (Prockter et al., 1999; Greeley et al., 2000; Neish et al., 
2012; Leonard et al., 2019; Noviello et al., 2019) and association with 
salt (Hand and Carlson, 2015). If chaos-related microfeatures are 
considered chaos-related features in E15RegMap01 and other RegMap 
areas, then the microchaos accuracy rate increases to 59 out of 83 times, 
or 71.1%. In other words, if a feature is mapped and classified as 
microchaos, it has a roughly 70% chance of being either a microchaos, 
hybrid, or spot. However, if we try to combine our classifications of 
microchaos, hybrids, and spots, our misclassifications of hybrids and 
spots reduces the overall correct percentage to 41.5% (59 out of 142 

total). We thus conclude that low-albedo microfeatures are more likely 
to be identified, but not more likely to be correctly classified. 

Hybrids and spots are found at higher rates than domes and pits, but 
their identification accuracy rates are still relatively low (Figs. 5 and 
7B). Hybrids were found at a rate of 66.7% but accurately classified as 
hybrid features only twice out of six times. Instead, hybrid features were 
incorrectly classified as microchaos features, domes, or an unmapped 
area. Spots were fairly easy to find in the E15LowRes01 imaging (find 
rate = 73.9%), but roughly half of the “spots” identified in E15Low-
Res01 were phantom features (49.1%). Additionally, at least one spot 
was misclassified into every potential microfeature group, though the 
most common incorrect category aside from phantom was microchaos 
(11.3%). 

Fig. 8. An example of an accidentally omitted (“missed”) Type II hybrid 
microfeature. A) It is not distinguishable in low-resolution imaging, but, as 
shown in B) its topography and morphology are clearly visible in the regional 
mosaic imaging, very likely due to the higher incidence angle in the regional 
imaging. Other examples of “invisible” features in the low-resolution imaging 
are seen to the east of the highlighted feature. One dark feature to the southwest 
of the highlighted feature was mistakenly classified as a spot in the low- 
resolution dataset, when the regional-scale imaging reveals it to be a shadow. 
North is up. 
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4.3. Missed features and the effects of imaging parameters on low- 
resolution mapping 

A total of 15 microchaos features were missed, and we examined 
these features more closely to determine why. Two of these microchaos 
features were associated with an anomalously bright spot in the 
E15LowRes01 imaging; these bright spots corresponded to the illumi-
nation of a topographic high nearby, and the microchaos’ shape and 
relatively low normalized albedo was lost. Two more microchaos fea-
tures were too close to ridges and did not appear as a separate feature in 
the images, so they were not mapped. Four of the missed microchaos 
features were indistinguishable from the background terrain in the 
E15LowRes01 imaging. The remaining nine microchaos features had no 
discernable reason for why they were missed and were simply omitted 
during the low-resolution mapping. We examine some potential reasons 
for this here. 

The reason for these errors of omission are likely due to the variation 
in imaging parameters between the E15RegMap01 and the E15Low-
Res01 images. In the E15RegMap01 images, the incidence angles range 
between 73.75 and 80.84◦, while in the low-resolution images, the range 
was 37.43–57.30◦, a wider range and a lower overall value than in the 
E15RegMap01 images. At these low incidence angles, the images 
emphasize the albedo characteristics of these microfeatures over those 
of morphology or topography. According to Hoppa et al. (2001), 
smoother modified chaos (as opposed to fresh chaos following the def-
initions of Greenberg et al., 1999) is more apparent in images with an 
incidence angle range between 71 and 78◦ because the higher incidence 
angles highlight morphology (individual chaos rafts and/or lineaments 
within the matrix). We do not seek here to detail the morphology of the 
microchaos we map, only to quantify its presence in two datasets, but we 
still must consider the effects that imaging parameters had on finding 
the microfeatures at all. 

To study the effects of observational parameters on chaos identifi-
cation, Neish et al. (2012) mapped chaos regions in regional mosaics, 
regional mosaic images that had been artificially degraded to the reso-
lution of a low-resolution image, and images originally taken at low- 
resolutions. In cases when the resolution was low (~1.5 km/pix) but 
the incidence angle was high (≥70◦), large chaos was easily identified. 
In images with low incidence angles (≤30◦), however, chaos could not 
be identified even if the resolution was 250 m/pix or less (Neish et al., 
2012). The incidence angles of the low-resolution images used in this 
study are above 30◦, but not by much, so it is likely that the incidence 
angle is responsible for many of these omissions. Though we’ve shown 
that this low-resolution dataset is not complete, corroborating previous 
results (Prockter et al., 1999; (Hoppa et al., 2001) Neish et al., 2012), it 
is not that far off in terms of total number of microchaos features 
mapped in the low-resolution images. Both the find and accuracy rates 
for microchaos were the highest out of all the microfeature types, at 
77.9% and 56.6%, respectively. This may be a reflection of the micro-
chaos themselves, as they presented with particularly low albedos. 
Because features generally tend to brighten with age on Europa (Pap-
palardo and Sullivan, 1996; Geissler et al., 1998; Prockter et al., 1999; 
Fanale et al., 2000; Prockter et al., 2017), the darker microchaos fea-
tures mapped in the low-resolution dataset are probably relatively 
young. 

A separate question is whether microchaos is more accurately iden-
tified in images with higher incidence angles, which would be consistent 
with the findings of Neish et al. (2012). Given the constraints on these 
images in this region, we cannot fully verify that at this time. Three other 
RegMap areas were detailed in Noviello et al. (2019), leaving open the 
potential for future work. Future mappers should also utilize simulta-
neous information from all images available, even if the area is already 
thought of as “covered,” as additional images could have different im-
aging parameters that make certain microfeatures more apparent. This is 
especially important when mapping in areas that don’t have corre-
sponding higher-resolution images (≤ 230 m/pix or better). 

Finally, the imaging parameters across these four low-resolution 
images affects the find and accuracy rates for all microfeature types, 
not just microchaos. The fact that the incidence angles were lower than 
in the E15RegMap01 images at least partially explains why many of the 
domes and almost all of the pits were missed, as low incidence angles 
make it difficult to see topographical variations (Hoppa et al., 2001) or 
morphology (Greenberg et al., 2003). Under these parameters, the 
hybrid features, especially the Type II “cracked dome” features, should 
have also been missed for similar reasons, or at the very least mis-
classified; this finding has been previously mentioned earlier in this text. 
Additionally, the typical size of these microfeatures (4–5 km for equal- 
area diameter and 5–8 km for maximum length) is under the 7.5 km 
limit, already biasing a mapper against finding them. When combined 
with the low incidence angles that minimize topographic variations, the 
fact that domes and pits are found and correctly classified at such low 
rates is fully understood. Examining low resolution images, or parts of 
images, with higher incidence angles could change the number and 
accuracy of pits and domes. 

4.4. Phantom features 

A final important limit on mapping in low-resolution images is the 
nature of phantom features in the E15LowRes01 dataset as it constrains 
how many features mapped in low-resolution imaging are not micro-
features at all and the reasons they were falsely identified. We report a 
total of 76 phantom features within the 214 features mapped in 
E15LowRes01 (35.5%), which is actually more features than we 
correctly classified. Examples of phantom features are shown in Fig. 9. 
This number initially suggests that a third of features mapped in low- 
resolution imaging could be non-features in higher resolution images. 
Eight out of the 76 features were above the 100 km2 maximum size for 
microfeature classification, and the remaining 68 features (89.5% of the 
total phantom features) are examined further to determine common 
reasons for mapping a featureless area as a feature in E15LowRes01. On 
numbers alone, that means that 68 out of 187 mapped microfeatures 
(36.4%) were revealed to be phantom features. 

There are specific reasons why false positives are represented in the 
dataset, as illustrated in Figs. 9 and 10. Most often (27 out of 68 phantom 
features, 39.7% for phantom microfeatures), a phantom feature was 
associated with a ridge on Europa, either the shadow of a single ridge or 
a location where multiple ridges intersect. While all efforts were made to 
exclude ridges from being misclassified as microfeatures, in low- 
resolution images with inconsistent lighting, ridges are not always 
recognizable as such. This is especially true for the thinner ridges (total 
width less than 2 km) or where dark spots that could indicate a feature 
jut out perpendicularly to the ridge. Sometimes (16 out of 68 phantom 
features, 23.5%) there was an anomalous dark spot in otherwise smooth 
terrain or there was a feature mapped in an area that was full of 
generally rough (though not fully chaotic) terrain. These dark areas 
were mistakenly classified as microchaos or spots because of their low 
apparent albedo. Three times (4.4%), a bright spot within a ridge was 
mistaken for the bright side of a pit or a dome. Seven times (10.3%) a 
phantom feature was the shadow of another actual feature, including 
real microfeatures. The remaining 15 times a potential feature was 
mapped and turned out to be a featureless area of Europa are true errors. 
These account for 22.1% of all of the phantom feature areas. 

The phantom rate also generally decreases as size increases. A simple 
linear regression model of the percentage of phantom features versus 
binned feature areas (y-intercept = 61.67, 95% CI:[43.07, 80.24], p- 
value <0.001; slope = − 0.651, 95% CI:[− 0.999, − 0.303], p-value =
0.002) shows a strong negative correlation between area of a feature and 
the phantom feature rate (r2 = 0.669, r2

adj. = 0.662, p-value <0.001). As 
the smallest microfeature type, the spots category is the one most likely 
to have false positives, though the possibility is present in every feature 
group to varying degrees (Table 4). Spots are also overrepresented in the 
E15LowRes01 dataset (Table 3); the 53 spots identified in the 
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E15LowRes01 dataset far exceeds the total number of mapped spots in 
the E15RegMap01 images. Part of the reason may be that spots, by 
definition, are discrete areas of consistently low albedo and no visible 
interior features, a definition that also describes shadows of ridges and 
other microfeature types whose details are lost in low-resolution images. 
According to our study, a feature that looks like a spot has a 50% chance 
of being a false positive, so spots are not reliable datapoints when 

evaluating global trends on Europa using low-resolution imagery. 

4.5. Applications to current global mapping efforts 

Based on the features in the E15RegMap01 region, maps of micro-
features within low-resolution images likely miss about 40% of the 
actual features present in a region; we identified only 117 of the 310 

Fig. 9. Multiple examples of phantom features in the dataset broken down into their main categories. On the left are the low-resolution images, and on the right are 
the regional mosaic images. In the Shadow images, also note how many of the ridges are invisible in the low-resolution imaging. North is up. 
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features mapped by Noviello et al. (2019). Most of the features that can 
be identified are microchaos, hybrids, or spots, but it is difficult to 
confidently differentiate between these feature types. Hence, a low 
resolution global map of microfeatures most likely includes predomi-
nantly microchaos, hybrids, and spots, especially the larger ones, and is 
unlikely to include many domes or any pits. A global map of micro-
features on Europa could map. 

Classification is even more challenging in low-resolution. We 
matched the high-resolution classification for 30% of the features across 
all feature types, whereas we correctly classified microchaos, hybrid, 
and spots (when considering them as a single group) 40% of the time. In 
addition, about 36% of features mapped at low resolution are phantoms. 
Together, these results suggest that, for a population of e.g., 100 
microfeatures mapped in low resolution, up to 40 are not true micro-
features, around 30 are classified correctly, the remaining 30 potential 
microfeatures are real but misclassified. We can also use these results to 
estimate how many features are typically missed. Out of 310 mapped in 
the E15RegMap01 dataset, 187 potential microfeatures were found in 
low-resolution mapping, a ratio of 1.66:1. Even though some of these 
were revealed to be phantom features, we must assume that phantom 
features will be a part of every low-resolution mapping dataset, so this 
estimate is still appropriate. We can then expect between 60 and 70 
other microfeatures in the same area would be missed for images with 
similar lighting conditions, and that they would mostly be pits and 
domes. 

To fully quantify the likelihood of false positives and missing features 
within a global data set, additional regions with both high and low 
resolution images should be analyzed. Of the four areas mapped by 
Noviello et al. (2019), E15RegMap01 had the highest number of 
microfeatures, and hence, the largest potential for missed features. 
Future analysis of sparser regions can provide additional constraints on 
the appearance of phantom features within low resolution images as 
there is more surface area available to be misinterpreted. 

5. Conclusion 

The relative lack of imaging data on Europa confounds efforts to 
understand the process behind microfeature and chaos formation. Ef-
forts to map microchaos outside of the traditional RegMap areas (Bunte, 
2013; Leonard et al., 2019) have been completed, and we have provided 

some estimates of the uncertainties associated with these maps. Lighting 
conditions and the subjective approaches between individual mapping 
datasets can also affect the identification of microchaos and micro-
features in general (Hoppa et al., 2001; Neish et al., 2012). 

This work presented a new dataset mapped in low-resolution images 
covering the same area as a well-studied regional mosaic on the north-
ern, trailing hemisphere of Europa (E15RegMap01) for comparison 
purposes. E15RegMap01 was selected because it had the highest number 
of microfeatures in the regional mosaic mapping project as described in 
Noviello et al. (2019), and thus the most opportunities to find multiple 
features in low-resolution images. It also provided the most chances for 
mistakes and the best chance of quantifying those mistakes. This 
approach is most successful in regions that have not been severely dis-
rupted by large chaotic terrain and chaos features, linear geologic fea-
tures such as bands and ridges, or areas of proposed tectonic activity (i. 
e., subsumption; Kattenhorn and Prockter, 2014). These areas are likely 
to have few microfeatures in general because of large-scale surface 
modifications, and as the presence of ridges is a significant source of 
error in mapping, are best avoided for maximal success in microfeature 
mapping. 

An independent dataset was created of the E15RegMap01 region by 
mapping features in four low-resolution images. Microchaos, spots, and 
hybrid features were relatively easy to find, while pits and domes were 
most often missed. Microchaos was also fairly easy to recognize as chaos, 
and approximately 60% of potential microchaos features were verified 
as true microchaos in the E15RegMap01 dataset. Hybrids and spots were 
also found at relatively high rates, but were often confused with each 
other, and with microchaos. The overall accuracy of only microchaos, 
hybrids, and spots is roughly 40%. Pits and domes were almost never 
recognized as pits or domes, and thus have very low accuracy rates. On 
top of low find rates for both of these feature types (24.2% and 5.0%, 
respectively), it is fair to say that pits and domes are effectively un-
identifiable in low-resolution images. 

All microfeatures provide critical information regarding Europa’s 
geologic history and microfeature formation processes, and thus all ef-
forts should seek to be as inclusive as possible when mapping micro-
features. Examining the same areas of Europa under different lighting 
conditions as much as the Galileo imaging dataset allows is the best 
approach to get an accurate picture of Europa’s surface. Present and 
future global mapping efforts of Europa are likely to be fairly successful 
in identifying microchaos, hybrids, and spots, but less successful in 
identifying pits and domes. Using images or parts of images where the 
incidence angles emphasize topography over albedo (>50◦ at a mini-
mum) will likely address this issue, though how completely is still an 
open question. 

One warning is that not all dark “chaotic” features in low-resolution 
images are microchaos, hybrids, or spots. Some of these false positives 
(phantom features) were associated with ridges, some were associated 
with the shadows of topographic highs and lows, and some were 
anomalously dark areas in Europa’s plains regions that have no associ-
ated microfeature. This false positive rate could be as high as 36%, 
roughly 1 in 3 mapped features. Europa mappers should take care to 
avoid ridges as much as possible to minimize the risk of mapping 
phantom features, though it will not eliminate the risk entirely. Future 
low-resolution mapping studies of Europa should also be aware that 
features larger than 5 km in diameter are significantly more valuable for 
making global inferences regarding Europa than features below 5 km. 
This number is a moderate value between the smallest feature that was 
correctly identified (a 3.56 km spot) and the five pixel limit (7.5 km), 
though it is ultimately up to the mapper how conservative they will be. 
By only considering features above 5 km, the likelihood that the feature 
is a true microfeature as opposed to a phantom feature and the likeli-
hood that the feature has been correctly classified increases. This does 
not mean that smaller features should be completely disregarded, but 
any general interpretation should minimally rely on them. 

The findings presented here suggest that there are many more places 

Fig. 10. Left: a pie chart showing the total number of features in E15LowRes01 
that were found and correctly classified, found but misclassified, and were 
unmapped areas (i.e., the phantom features). Right: the phantom features 
category was broken down further to show the reasons for why these features 
were mapped if they were not associated with a true microfeature. Percentages 
represent their percentage shares of the total microfeature number, not the 
percentage shares of the unmapped features total number. Examples of the 
phantom features types are shown in Fig. 9. 
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where potential microfeatures could be mapped on Europa’s surface, 
thus dramatically increasing the amount of information available on 
microfeatures and providing solid constraints for modeling studies 
(Collins and Nimmo, 2009; Schmidt et al., 2011; Michaut and Manga, 
2014; Manga and Michaut, 2017). The ultimate extension of this work 
would be a map of all chaos, micro- and otherwise, with a confidence 
level attached to all the features represented on the map. These robust 
observations would provide firm limitations that need to be explained 
by microchaos and microfeature formation models, in turn advancing 
the state of knowledge of Europa’s geophysics, heat and material 
transport processes, and surface evolution. This work will also allow for 
predictions to be made ahead of the Europa Clipper Flagship mission 
(Phillips and Pappalardo, 2014; Pappalardo et al., 2016; Pappalardo 
et al., 2017) regarding Europa’s geology, which can then be tested with 
the instrument data from the mission. 
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