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Introduction:  In the last decade, several lines of 

evidence—from our own solar system and from studies 
of exoplanets—have converged to suggest that growth 
of planets is extraordinarily fast. In our own solar sys-
tem, Hf-W dating of Mars shows it was an embryo 
formed between 1 and 3 Myr after CAIs (calcium-rich, 
aluminum-rich inclusions) [1]. The isotopic dichotomy 
of the solar system [2], reduced water content inside 
the snow line [3] and the concentration of CAIs in car-
bonaceous chondrites [4] have all been explained by 
invoking formation of Jupiter’s ~20-30 ME core in < 1 
Myr. Ingassing of nebula gas into the magma oceans of 
the Earth [5,6] and Theia [7] explain their low-D/H 
hydrogen reservoirs and their He and Ne isotopic 
abundances. This requires them to achieve masses of 
several × 0.1 ME in < 3 Myr. In exoplanetary systems, 
many super-Earths accreted substantial hydrogen-rich 
atmospheres [8,9], requiring them to grow to several 
Earth masses within < 3 Myr [10]. The gaps in young 
protoplanetary disks (sometimes ~ 105 yr, like HL Tau) 
observed by the Atacama Large Millimeter Array, may 
be due to massive (tens of Earth masses) planets [11]. 
Overall, planets in our solar system and others demand 
accretion rates of at least 10-6 ME yr-1.  

Recent astrophysical modeling suggests a path for 
rapidly turning micron-sized dust into planets thou-
sands of km in diameter. Fast coagulation produces 
millimeter-sized particles (precursors of compactified 
dust, or melted chondrules). For conditions in the inner 
disk, their Stokes number (the ratio of aerodynamic 
stopping time to orbital time) is St ~ 10-3. Turbulence 
then concentrates these into aggregates up to ~10 cm in 
size [12], with St ~ 0.01 – 0.1. These particles are in-
termittently but rapidly collected into ~100-km objects 
by streaming instability [13]. The very largest of these 
objects, those several ×100 km in diameter, can grow 
rapidly by pebble accretion. This aerodynamic process  
relies on drag to slow particles (especially those with 
St ~ 0.01 – 0.1) in the vicinity of a growing planet, 
allowing it to capture almost all such particles entering 
the planet’s Hill sphere [14]. Growth at rates of at least 
10-6 ME yr-1 appear possible.  

As successful as pebble accretion is, the theory ap-
pears incomplete at present. An important constraint 
from observations is that exoplanets in multiple-planet 
systems (observed in transits by Kepler and followed 
up by radial velocity measurements) appear to be simi-
lar in orbital period ratios and in size, and therefore 
also mass [15]. The growth of planets by pebble accre-

tion in the Hill regime scales as dMp/dt ~ Mp
2/3 [14], so 

the mass ratios between embryos should decrease with 
time very slowly, making it difficult to reconcile with 
the peas-in-a-pod result. We propose a modification of 
pebble accretion involving embryos on eccentric orbits 
that leads to embryos growing to similar sizes.  

 
Growth on circular orbits:  Growth of embryos 

on circular orbits proceeds as follows. Pebbles with St 
~0.01-0.1 entering an embryo’s Hill sphere with radius 
RH = a (Mp / 3M

¤
)1/3 are accreted with high efficiency, 

assuming they have scale height < RH. Pebbles are 
assumed to sweep into the Hill sphere at velocity VH = 
RHΩK, ΩK = (GM

¤
/a3)1/2, due to Keplerian shear across 

the Hill radius. The embryo sweeps up pebble mass at 
a rate dMp/dt = 2 RH Σp VH, where Σp is the surface 
density of pebbles (St~0.01–0.1 solids). This yields 
dMp/dt ~ 47 (Σp / 1 g cm-2) (Mp / 1 ME)2/3 ME Myr-1 at 1 
AU. This is such a high accretion rate, an embryo will 
quickly (~100 years) sweep up the mass in its torus, 
2πa (2 RH) Σp = 0.0047 (Σp / 1 g cm-2) (Mp / 1 ME)1/3 
ME , and will grow only if a pebble flux can feed its 
torus. [A surface density Σp = 1 g cm-2 of pebbles cor-
responds to 20% of all solids if the gas surface density 
is 1000 g cm-2.] The radial drift of pebbles is dMp/dt = 
(2πa) Σp Vpr, where Vpr = -St (ηVK) / (1+St2), and η =   
-(C2/ VK

2) d lnP / d lnr [16]. But only a fraction of the-
se, (2RH/Vpr)(VH/2πa) (which is < 1 if St ≥ 0.01 and 
Mp ≤ 1 ME), are accreted before drifting through the 
annulus entirely, yielding the same result: dMp/dt = 2 
RH Σp VH. Thus dMp/dt ~ Mp

2/3 and larger planets 
should grow faster than small ones. Integrating the 
growth equation, assuming Σp = 1 g cm-2 at 1 AU, a 0.5 
ME planet would grow to 13.2 ME in only 105 yr, and a 
2.0 ME planet would grow to 22.6 ME in the same time.  
 
Growth on eccentric orbits: Growth by pebble accre-
tion is faster for an embryo on an eccentric orbit in-
stead of a circular one. In a frame co-moving with the 
embryo, the embryo makes epicyclic orbits with radial 
excursions ±ae, where e is the eccentricity. The em-
bryo and pebbles have relative velocity ~ eVK = eaΩK, 
several km/s. Analogous to the circular case, immedi-
ately after being put onto an eccentric orbit, embryos 
grow as dMp/dt = 2RH Σp eVK, accreting a high fraction 
of the pebbles in its epicyclic torus in one orbit [17]. 
Thereafter it grows at the rate pebbles in the annulus 
between a(1-e) and a(1+e) can drift into the torus. 
Pressure support of gas makes it orbit at an azimuthal 
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velocity ηVK/2 slower than the embryo, and the azi-
muthal velocities of pebbles differ from Keplerian by ~ 
(-ηVK/2) / (1 + St2) [16]. Typically η ~ 10-3; in the 
models of [4], η =3 × 10-3. Within a time 2πa / (ηVK/2) 
~ 2η-1 orbits, the embryo sweeps up the entire annulus 
of area ≈ 2πa (2ae). The mass accretion rate while it is 
sweeping up the annulus is dMp/dt =  (ae) Σp (ηVK) / 
(1+St2). A correction would have to be made if the Hill 
sphere were small enough that the pebbles could cross 
the torus width in less than one orbit, i.e., if 2RH / 
(ηVK/2) < 2π / ΩK, or Mp < [157 η]3 ME ~ 0.0034 ME; 
but as long as an embryo is at least this large, it will 
sweep up pebbles at the rate dMp/dt ≈ (ae) Σp (ηVK). 
An embryo will sweep up the entire pebble mass of the 
annulus, ΔM = (2πa)(2ae) Σp = 0.05 (Σp / 1 g cm-2) (e / 
0.1) ME in less than 103 yr. 

As with circular orbits, continued embryo growth 
relies on radial drift of pebbles. Pebbles are brought 
into the annulus at a rate dMp/dt = (2πa) Σp Vpr, where 
Vpr = -St (ηVK)/(1+St2). The fraction of these that are 
accreted is 100% if St < e/2π, and dMp/dt ≈ 2πa Σp St 
ηVK; but is e/(2πSt) if St > e/2π, and dMp/dt = ae Σp 
ηVK, as before. Either generally exceeds the circular 
orbit pebble accretion rate = 2 RH Σp VH, because the 
embryo can sweep up pebbles from a larger area, and 
because pebbles are swept up with greater efficiency. 
 

Embryos may accrete at the circular orbit rate until 
they are scattered onto an eccentric orbit. While on 
eccentric orbits, before their orbits are damped, an em-
bryo can quickly accrete all of the pebbles in its annu-
lus. At 1 AU in a disk model with gas densities like 
those of [4], τ =0.1 (Mp/0.5 ME)1/3 Myr for small em-
bryos Mp < 0.5 ME in the gas drag regime, and τ = 0.1 
(Mp/ 0.5 ME)-1 Myr for larger embryos in the disk 
torque regime [18]. Embryos generally will accrete all 
the pebbles in their annulus before their eccentricities 
damp, gaining mass ΔM = (2πa)(2ae) Σp = 0.05 (Σp / 1 
g cm-2) (e / 0.1) ME in < 103 yr. Thereafter they grow at 
rates dependent on the pebble flux. Integrating the 
coupled differential equations for growth dMp/dt and 
damping de/dt ~ -e Mp,  for St > e/2π, embryos grow 
linearly in time, but for durations that depend on their 
initial masses. A 0.5 ME embryo set on an e=0.1 orbit 
will circularize in ~0.022 Myr and will grow to mass 
10.1 ME. A 2.0 ME embryo will circularize in ~0.019 
Myr and will grow to 10.3 ME. In the case with St < 
e/2π, embryos may gain mass as their eccentricities 
damp, at rate dMp/dt ≈ (ae) Σp (ηVK). Solving the cou-
pled differential equations for growth dMp/dt ~ e and 
damping de/dt ~ -e Mp, we find that being scattered 
onto an orbit with eccentricity e, will cause a 0.5 ME 
embryo to reach mass Mp = 3.80 (Σp / 1 g cm-2)1/2 (e / 
0.1)1/2 ME, and a 2.0 ME embryo to reach mass Mp = 

4.26 (Σp / 1 g cm-2)1/2 (e / 0.1)1/2 ME, both within ~5 × 
104 yr. Once an embryo’s orbit has circularized, it will 
continue to accrete at the circular pebble accretion rate, 
dMp/dt = 2 RH Σp VH.  

 
System Architecture:  In systems with embryos 

growing by pebble accretion on circular orbits, dMp/dt 
~ Mp

2/3, and the mass ratio of two embryos tends to 
decease with time, but slowly. In the example above, 
over 0.1 Myr, the mass ratio of two embryos decreased 
from (2.0)/(0.5) = 4.0, to (22.6)/(13.2) = 1.7. Embryos 
scattered onto eccentric orbits will accrete by pebble 
accretion more rapidly than if they were on circular 
orbits, at rates independent of mass, at least until their 
eccentricities damp. In the one example above, with St 
> e/2π, the mass ratio of two embryos decreased from 
(2.0)/(0.5) = 4.0, to (10.3)/(10.1) = 1.02. In the other 
case, with St < e/2π, the mass ratio decreased from 
(2.0)/(0.5) = 4.0, to (4.26)/(3.80) = 1.12. Embryos are 
only transiently on eccentric orbits, after being scat-
tered; but while they are, the small embryos tend to 
grow more rapidly and catch up in mass with the larger 
embryos. By the time they each circularize, they will 
have attained masses much more similar than if they 
grew at the circular orbit pebble accretion rate. The 
tendency of exoplanets in the same system to have 
similar masses [8] may best be explained if a signifi-
cant fraction of their growth occurs after they are scat-
tered onto eccentric orbits. 
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