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Introduction:  Chaos is an iconic surface feature 

on Europa. It is loosely defined as isolated patches 
with a hummocky surface, a clear disruption of older 
terrain, low albedo, and distinct reddish-brown 
material [1]. The locations of chaotic terrains on 
Europa have been reported in several studies [2-8], but 
most chaos mapping that includes smaller features 
(≤10 km) has been limited to the ~10% Europa’s 
surface imaged at sufficient resolution to resolve the 
characteristic morphology of chaos. Although attempts 
have been made to construct a global map of chaos 
(e.g. [8]), differences in image resolution, viewing 
geometry, and lighting conditions make robust 
characterization challenging [6]. 

Chaos features are thought to be the direct result of 
heat transport within Europa’s ice shell [9]. Though 
multiple heat transport models describing the 
formation of Europa’s chaos exist, none fully explains 
all instances of chaos. Because chaotic terrain is 
generally redder than other terrains, perhaps due to the 
presence of salts on Europa’s surface [10], it may be 
possible to use color data from Galileo to constrain the 
extent of chaos on Europa’s surface even in low-
resolution (≥ 1.5 km/pixel) images. Knowing the 
locations of chaos and the scales on which it occurs 
will help to constrain chaos formation models.  

We present preliminary results of a new method to 
quantitatively discriminate between different types of 
microfeatures (≤ 100 km2) on Europa, specifically 
between chaos and non-chaos terrains, to create a 
global map of chaos at small sizes. We begin by 
mapping features in higher-resolution (≤ 400 m/pixel) 
regional mapping images and identifying 
characteristics that can robustly discriminate between 
feature types. In particular, we assess the efficacy of 
darkness and color in identifying chaos on Europa. 

Methods:  All of the images used in this study 
derive from the Solid State Imager (SSI) camera on the 
Galileo mission to the Jupiter system [11]. The images 
used here are from the northern portion of the 15th 
flyby orbit of Europa (called E15). This mosaic is 
centered at 225° longitude, and covers an approximate 
total area of roughly 350,000 km2. 

Mapping. All small features of any morphology 
were mapped as standard polygons in ArcGIS. 
Features that could be identified as a specific type of 
morphology (chaos, spot, dome, or pit) were noted and 
categorized subjectively based on contextual clues in 
the actual images. Features that could not be attributed 
to one group were left unclassified. In total, ~85% of 
the mapped features were attributed to a certain feature 
class, with the remaining 15% unclassified. The 

microfeature population contained 184 chaos features, 
10 spots, 174 domes, and 80 pits. For each of the 522 
features, we recorded five characteristics: area (km2), 
perimeter (km), maximum length (km), maximum 
width (km), and darkness (greyscale digital number 
divided by 255, the maximum value for the 8-bit SSI) 
[11]. Darkness is often correlated with redness [1, 10], 
enabling us to conduct a preliminary analysis before 
collecting color data for the microfeatures. 

Statistical analysis. Using the data collected for 
each microfeature, we conducted a discriminant 
function analysis (DFA), which is primarily used to 
sort data points of unknown origin or morphology into 
two or more naturally occurring groups [12]. This test 
is similar to the multiple analysis of variance 
(MANOVA) test, but differs in that the DFA requires 
independent, continuous variables measured and 
reported for each data point [12].  

A limit of the DFA is that it assumes the list of 
groups is complete, and will only sort data points into 
one of the predetermined groups; in this case, the 
groups are the four types of microfeatures identified in 
the E15-01 images. The DFA will then test in-group 
variances of each of the microfeature characteristics 
and compare them to the between-group variances. 
Data points that are not assigned to a group will be 
forced into the group to which they are most similar 
according to their individual characteristics. The DFA 
then plots both grouped and non-grouped data 
according to two functions with the highest 
eigenvalues. The plots and functions show the degree 
to which the groups differ with respect to the 
individual characteristics. 

Area and perimeter did not follow normal 
distributions, a violation of one criterion of the DFA 
[12], so two ratios were substituted for these data 
instead. These ratios are: 1) the square root of the area 
divided by the perimeter, and 2) the maximum length 
divided by the perimeter. Both values give some sense 
of the irregularity in shape of each feature. Eccentricity 
was calculated as the maximum length divided by the 
maximum width. Each of these “morphometric” 
variables follows a roughly normal distribution. 

We conducted two tests with slightly different 
weighting schemas. In the first analysis, the probability 
of any unclassified data point being sorted into any one 
group was equal for each group (25%), and in the 
second analysis that same probability was weighted 
based on the relative size of each group.  

In order to determine how effectively the DFA 
sorted features, we conducted a cross-validation test, in 
which each classified data point is removed from its 
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group and subsequently remapped according to the 
functions derived from all other data points. The test is 
considered successful if the data point is reclassified 
into its original group. 

Results and Discussion:   
Darkness variable excluded. The first analyses only 

included morphometric characteristics of the data 
(eccentricity, Ratio 1, and Ratio 2), and deliberately 
excluded any information regarding the darkness of the 
features. In the case where group classification 
probabilities were equal, cross-validation was 
successful in only 24.8% of cases. In the case where 
group classification probabilities were weighted, cross-
validation improved to 40.5%. As shown in Figure 1, 
the four microfeature types overlap, making correct 
placement of unclassified features challenging. 

Darkness variable included. The analyses were 
repeated, this time with darkness included as a sorting 
variable. In the case of equal group classification 
probability, 57.9% of cross-validated cases were 
successful. In the case of weighted group classification 
probability, 70.7% of cross-validated cases were 
successful. However, the success rate for sorting chaos 
features is 91.8%. In other words, while some feature 
types are not easily distinguishable, chaos features 
separate out from the other three types. These results 
are shown in Figure 2. 

Conclusions: The goal of this project was to use a 
DFA to discriminate between chaos and non-chaos 
terrain on Europa’s surface, with ultimate applications 
to the Europa Multiple Flyby Flagship mission 
objectives. In the cases where only the morphometric 
variables (the ratios and eccentricity) were included, 
the success of cross-validation was, at best, 40%. This 
is due to the fact that many of these microfeatures 
present as morphometrically similar, especially in 
terms of eccentricity, at the 200 m/pixel scale. When 
darkness is added as a sorting variable, the success of 
cross-validation increases to roughly 70% and is >90% 
for chaos features specifically. Because darkness and 
redness are correlated, we anticipate more robust 
sorting once color is included in the analysis.  

Our next step involves mapping features in 
additional, well-imaged regions, measuring the redness 
of all features using color data taken by Galileo, and 
conducting additional DFAs to obtain the most robust 
criteria for identifying chaos. We will then attempt to 
map chaos features in lower resolution images of the 
same regions to determine the limits of our ability to 
reliably find chaos using this approach. Our ultimate 
goal is to create a global map of chaos features down 
to sizes of ~10km, which will provide important 
constraints on the formation mechanism of chaos. 
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Figure 1: The DFA shows all groups overlapping 
when darkness is excluded as a sorting variable. 

Figure 2: The DFA shows the chaos group 
separating from the other features when darkness 
is included as a sorting variable. 
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